Tarantula toxins interacting with voltage sensors in potassium channels
نویسندگان
چکیده
منابع مشابه
Molecular Surface of Tarantula Toxins Interacting with Voltage Sensors in Kv Channels
The venom from spiders, scorpions, and sea anemone contain a rich diversity of protein toxins that interact with ion channel voltage sensors. Although atomic structures have been solved for many of these toxins, the surfaces that are critical for interacting with voltage sensors are poorly defined. Hanatoxin and SGTx are tarantula toxins that inhibit activation of K(v) channels by interacting w...
متن کاملMolecular Surface of Tarantula Toxins Interacting with Voltage Sensors in K
The venom from spiders, scorpions, and sea anemone contain a rich diversity of protein toxins that interact with ion channel voltage sensors. Although atomic structures have been solved for many of these toxins, the surfaces that are critical for interacting with voltage sensors are poorly defined. Hanatoxin and SGTx are tarantula toxins that inhibit activation of K v channels by interacting wi...
متن کاملTarantula Toxins Interact with Voltage Sensors within Lipid Membranes
Voltage-activated ion channels are essential for electrical signaling, yet the mechanism of voltage sensing remains under intense investigation. The voltage-sensor paddle is a crucial structural motif in voltage-activated potassium (K(v)) channels that has been proposed to move at the protein-lipid interface in response to changes in membrane voltage. Here we explore whether tarantula toxins li...
متن کاملNovel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies.
Three novel peptides with the ability to inhibit voltage-dependent potassium channels in the shab (Kv2) and shal (Kv4) subfamilies were identified from the venom of the African tarantulas Stromatopelma calceata (ScTx1) and Heteroscodra maculata (HmTx1, HmTx2). The three toxins are 34- to 38-amino acid peptides that belong to the structural family of inhibitor cystine knot spider peptides reticu...
متن کاملTargeting voltage sensors in sodium channels with spider toxins.
Voltage-activated sodium (Nav) channels are essential in generating and propagating nerve impulses, placing them amongst the most widely targeted ion channels by toxins from venomous organisms. An increasing number of spider toxins have been shown to interfere with the voltage-driven activation process of mammalian Nav channels, possibly by interacting with one or more of their voltage sensors....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Toxicon
سال: 2007
ISSN: 0041-0101
DOI: 10.1016/j.toxicon.2006.09.024